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Abstract

Long-tailed problem has been an important topic in face
recognition task. However, existing methods only concen-
trate on the long-tailed distribution of classes. Differently,
we devote to the long-tailed domain distribution problem,
which refers to the fact that a small number of domains fre-
quently appear while other domains far less existing. The
key challenge of the problem is that domain labels are too
complicated (related to race, age, pose, illumination, etc.)
and inaccessible in real applications. In this paper, we pro-
pose a novel Domain Balancing (DB) mechanism to han-
dle this problem. Specifically, we first propose a Domain
Frequency Indicator (DFI) to judge whether a sample is
from head domain or tail domain. Secondly, we formu-
late a light-weighted Residual Balancing Mapping (RBM)
block to balance the domain distribution by adjusting the
network according to DFI. Finally, we propose a Domain
Balancing Margin (DBM) in the loss function to further op-
timize the feature space of the tail domains to improve gen-
eralization. Extensive analysis and experiments on several
face recognition benchmarks demonstrate that the proposed
method effectively enhances the generalization capacities
and achieves superior performance.

1. Introduction

Feature descriptor is of crucial importance to the perfor-
mance of face recognition, where the training and testing
images are drawn from different identities and the distance
metric is directly acted on the features to determine whether
they belong to the same identity or not. Recent years have
witnessed remarkable progresses in face recognition, with a
variety of approaches proposed in the literatures and applied
in real applications [18, 32, 4, 7, 6, 42]. Although yielding
excellent success, face recognition often suffers from poor
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Figure 1. The long-tailed domain distribution demarcated by the
mixed attributions (e.g., race and age) in the MS-Celeb-1M [8]
and CASIA-Webface [36]. Number of classes per domain falls
drastically, and only few domains have abundant classes. (Baidu
API [1] is used to estimate the race and age)

generalization, i.e., the learned features only work well on
the domain the same as the training set and perform poorly
on the unseen domains. This is one of the most critical is-
sues for face recognition in the wild, partially due to the
non-negligible domain shift from the training set to the de-
ployment environment.

Real-world visual data inherently follows a long-tailed
distribution, where only a limited number of classes appear
frequently, and most of the others remain relatively rare. In
this paper, we aim to investigate the long-tailed domain dis-
tribution and balance it to improve the generalization capac-
ity of deep models. However, different from the long-tailed
problem in classes, domain labels are inaccessible in most
of applications. Specifically, domain is an abstract attribute
related to many aspects, e.g., age (baby, child, young man,
aged, etc), race (caucasian, indian, asian, african, etc.), ex-
pression (happy, angry, surprise, etc.), pose (front, profile,
etc.), etc. As a result, the domain information is hard to
label or even describe. Without the domain label, it is diffi-
cult to judge whether a sample belongs to the head domains
or the tail domains, making existing methods inapplicable.
Figure 1 illustrates a possible partition by the mixed attribu-
tions (e.g., race and age).

We formally study this long-tailed domain distribution



Figure 2. The face features are trivially grouped together according
to different attributions, visualized by t-SNE [20]

problem arising in real-world data settings. Empirically, the
feature learning process will be significantly dominated by
those few head domains while ignoring many other tail do-
mains, which increases the recognition difficulty in the tail
domains. Such undesirable bias property poses a significant
challenge for face recognition systems, which are not re-
stricted to any specific domain. Therefore, it is necessary to
enhance the face recognition performance regardless of do-
mains. An intuitive method to handle the long-tailed prob-
lem is over-sampling and under-sampling samples on the
tail and the head, respectively [10, 27, 41]. However, it does
not work well on domain balancing since the the ground-
truth domain distribution is inaccessible. Besides, the sam-
ples belong to the same domain share some appearance con-
sistency, and the network architecture and the loss function
should be adjusted to capture this consistency. They lack
internal mechanisms to handle the intrinsic imbalance. To
overcome this drawback, we propose a Domain Balancing
(DB) mechanism to balance the long-tailed domain distri-
bution.

Firstly, since the ground truth domain distributions are
inaccessible without domain labels, for each sample, we
should predict where belonged domain locates on the dis-
tribution. To this end, we point out that the domain fre-
quency can be instructed by the inter-class compactness. In
the holistic feature space, the classes with similar attributes
tend to group, forming a specific domain as shown in Fig-
ure 2. Besides, in the feature space, the compactness is not
everywhere equal. Take the domains in Figure 1 as an ex-
ample, we find the compact regions tend to belong to the
head domain (e.g., caucasian male), and the sparse regions
tend to belong to the tail domains (e.g., children, african fe-

male) The detailed analysis will be shown in Section 3.1.
Motivated by these observations, we propose to utilize the
inter-class compactness which is the local distances within a
local region as the Domain Frequency Indicator (DFI). Sec-
ondly, we design a novel module called Residual Balanc-
ing Mapping (RBM) block, which can adaptively change
the network based on DFI to find the best network to ad-
just each domain. The block consists of two components:
a domain enhancement branch and a soft gate. The domain
enhancement branch aims to adjust the network to each do-
main through enhancement residual and the soft gate at-
taches a harmonizing parameter to the residual to control
the amount of residual according to the domain frequency.
Thirdly, in the loss function, we propose a Domain Balanc-
ing Margin (DBM) to adaptively modify the margin accord-
ing to the DFI for each class, so that the loss produced by
the tail domain classes can be relatively up-weighted. The
framework is shown in Figure 3.

The major contributions can be summarized as follows:

• We highlight the challenging long-tailed domain prob-
lem, where we must balance the domain distribution
without any domain annotation.

• We propose a Domain Balancing (DB) mechanism to
solve the long-tailed domain distribution problem. The
DB can automatically evaluate the domain frequency
of each class with a Domain Frequency Indicator (DFI)
and adapt the network and loss function with Resid-
ual Balancing Mapping (RBM) and Domain Balancing
Margin (DBM), respectively.

• We evaluate our method on several large-scale face
datasets. Experimental results show that the proposed
Domain Balancing can efficiently mitigate the long-
tailed domain distribution problem and outperforms
the state-of-the-art approaches.

2. Related Works

Softmax based Face Recognition. Deep convo-
lutional neural networks (CNNs) [3] have achieved
impressive success in face recognition. The current pre-
vailing softmax loss considers the training process as a
N-way classification problem. Sun et al. [28] propose the
DeepID for face verification. In the training process, for
each sample, the extracted feature is taken to calculate the
dot products with all the class-specific weights. Wen et
al. [35] propose a new center loss penalizing the distances
between the features and their corresponding class centers.
Wang et al. [31] study the effect of normalization during
training and show that optimizing cosine similarity (cosine-
based softmax loss) instead of inner-product improves the
performance. Recently, a variety of margin based softmax



Figure 3. There are three main modules: DFI, RBM and DBM. The DFI indicates the local distances within a local region. The RBM
harmonizes the representation ability in the network architecture, while the DBM balances the contribution in the loss.

losses [18, 32, 4] have achieve the state-of-the-art perfor-
mances. SphereFace [18] adds an extra angular margin to
attain shaper decision boundary of the original softmax
loss. It concentrates the features in a sphere mainfold.
CosFace [32] shares a similar idea which encourages the
intra-compactness in the cosine manifold. Another effort
ArcFace [4] uses an additive angular margin, leading to
similar effect. However, these efforts only consider the
intra-compactness. RegularFace [38] proposes an exclusive
regularization to focus on the inter-separability. These
methods mainly devote to enlarge the inter-differences
and reduce the intra-variations. Despite their excellent
performance on face recognition, they rely more on the
large and balanced datasets and often suffer performance
degradation when facing with the long-tailed data.

Long−Tailed Learning Long-tailed distribution of
data has been well studied in [37, 19]. Most existing meth-
ods define the long-tailed distribution in term of the size of
each class. A widespread method is to resample and rebal-
ance training data, either by under-sampling examples from
the head data [10], or over-sampling samples from the rare
data more frequently [27, 41]. The former generally loses
critical information in the head sets, whereas the latter gen-
erates redundancy and may easily encounter the problem of
over-fitting to the rare classes. Some recent strategies in-
clude hard negative mining [5, 15], metric learning [12, 23]
and meta learning [9, 34]. The range loss [37] proposes
an extra range constraint jointly with the softmax loss. It
reduces the k greatest intra-class ranges and enlarges the
shortest inter-class distance within one batch. The focal loss
[15] employs an online version of hard negative mining. Liu
et al. [19] investigate the long-tailed problem in the open
set. Its so-called dynamic meta-embedding uses an associ-
ated memory to enhance the representation. Adaptiveface
[16] analyzes the difference between rich and poor classes

Figure 4. (a) Identities with small inter-class compactness value
in the MS-Celeb-1M. (b) The inter-class compactness vs. race
distribution. (c) The inter-class compactness vs. age distribution.

and proposes the adaptive margin softmax to dynamically
modify the margins for different classes. Although the long-
tailed problem has been well studied, they are mainly based
on the category frequency distribution. None of previous
works consider the similar problem in domain. One possi-
ble reason may be due to the ambiguous domain partition
as discussed above. In fact, the domains may not even have
explicit semantics, i.e., they are actually data-driven.

In contrast, our method focuses on the long-tailed do-
main, which is more in line with the real-world application.
The proposed method balances the contribution of domains
on the basis of their frequency distribution, so that it can
improve the poor generalization well.

3. Domain Balancing

We propose to balance the samples from different do-
mains without any domain annotation. Domain Balanc-



Figure 5. The Residual Balancing Module is designed with light-
weighted structure and it can be easily attached to existing network
architecture. The block dynamically enhances the feature accord-
ing to DFI.

ing (DB) mechanism has three components: Domain Fre-
quency Indicator (DFI) to evaluate the domain frequency,
the Residual Balancing Mapping (RBM) to adjust the net-
work and the Domain Balancing Margin (DBM) to adjust
the loss functions according to domain distribution.

3.1. Domain Frequency Indicator

To handle the long-tailed domain distribution problem,
we first need to know whether a sample is from a head do-
main or from a tail domain. We introduce a Domain Fre-
quency Indicator (DFI) based on the inter-class compact-
ness. Inter-class compactness function of a given class is
formulated as:

IC(w) = log
K

∑
k=1

es·cos(wk,w) (1)

where w is the prototype of one class in the classification
layer and k is the k-th nearest class, where the distance of
two classes i, j is formulated as cos(wi,w j). The high fre-
quency domain, i.e., head domain, usually corresponds to
a large IC(w), and vice versa. Then we define the Domain
Frequency Indicator as:

DFI =
ε

IC(w) (2)

which is inversely proportional to the inter-class compact-
ness IC(w). ε is a constant value. Ideally, if the classes
are uniformly distributed, each class will have the same
DFI. Otherwise, the classes with larger DFI are more likely
to come from a tail domain and should be relatively up-
weighted. As shown in Figure 4, the identities with larger
DFI values usually come from Africa, children or the aged,
which are highly related with the tail domains.

3.2. Residual Balancing Module

In real-world application, face recognition accuracy de-
pends heavily on the quality of the top-level feature x. The

goal in this section is to design a light-weight solution to
adjust the network to extract domain specific features ac-
cording to the domain distribution. Our Residual Balancing
Module (RBM) combines the top-level image feature and a
residual feature, using DFI to harmonize the magnitude.

Even though big training data facilitates the feature dis-
criminative power, the head domains dominate the learning
process and the model lacks adequate supervised updates
from the tail classes. We hope to learn a harmonizing mod-
ule through a mapping function Mre(.) to adjust the features
for samples of different domain frequency to mitigate the
domain imbalance problem. We formulate Mre as a sum of
the original feature x and residual acquired by a feature en-
hancement module R(x) weighted by f (x). We denote the
resulting feature as xre and the RRM can be formulated as:

xre = Mre(x)

= x+ f (x) ·R(x)
(3)

where x is the top-level feature, f (x) is a soft gate depending
on the DFI. When DFI is large, the input feature probably
belongs to a tail class, and a large enhancement is assigned
to the residual. Otherwise, the enhancement is trivial. The
magnitude of residual is thus inversely proportional to the
domain frequency.

The combination of soft gate and and the residual can
be regarded as a harmonizing mechanism that adopts do-
main distribution information to control the magnitude to
be passed to the next layer.

We now describe the implementation of the two com-
ponents: The first component is the residual R(x), which
is implemented by a light-weighted full-connected layer. It
consists of two full-connected layers and a batch norm layer
shown in Figure 5. The second component is the soft gate
coefficient DFI, which is learned from the feature x and su-
pervised by the DFI. For simplicity, the linear regression is
employed by the L2 loss:

Lrrm = ‖ f (x)−DFI(x)‖2
2 (4)

where DFI(x) is defined in Eq. 2 from the last iteration.
f (x) is a mapping function devoting to associate the repre-
sentation x and DFI.

3.3. Domain Balancing Margin

We propose a domain-aware loss by Domain Balancing
Margin (DBM) to adaptively strengthen the classes in the
tail domains. We first visualize the phenomenon through a
trinary classification in Figure 6. The main difference be-
tween DBM and CosFace is that our margin is dynamic and
feature compactness related. For the common CosFace, the
decision boundary assigns the same margin without consid-
ering the feature compactness. It cannot efficiently com-
pact the feature space of a tailed-domain class (class C3)



Figure 6. Geometrical interpretation of DBM from the feature per-
spective. Different color areas indicate feature space from distinct
classes. (a) CosFace assigns an uniform margin for all the classes.
(b) DBM assigns margin according to the inter-class compactness
adaptively.

since the sparse inter-class distribution makes the decision
boundary easy to satisfy. The termination of optimization
is so early, leading to poor generalization. In contrast,
our DBM drives adaptive decision boundary in terms of
the inter-compactness, where margin2

3 (tail domain margin)
should be much larger than margin2

1 (head domain margin)
. Consequently, both the inter-separability and the intra-
compactness can be guaranteed.

We embed the DFI into CosFace and the DBM loss can
be formulated as :

Ldbm =−logPi,yi =−log
es(cosθi,yi−βyi ·m)

es(cosθi,yi−βyi ·m)+∑
C
k 6=yi

es·cosθi,k

(5)
where βyi = DFIyi . We combine these two parts by a pa-
rameter λ . The final loss function can be formulated as:

L = Ldbm +λLrrm (6)

4. Experiments
4.1. Datasets

Training Set. We employ CASIA-Webface [36] and
MS-Celeb-1M [8] as our training sets. CASIA-WebFace is
collected from the web. The face images are collected from
various professions and suffer from large variations in illu-
mination, age and pose. MS-Celeb-1M is one of the largest
real-world face datasets containing 98,685 celebrities and
10 million images. Considering the amount of noise, we
use a refined version called MS1MV2 [4] where a lot of
manual annotations are employed to guarantee the quality
of the dataset.

Testing Set. During testing, we firstly explore databases
(RFW [33], AFW [2]) with obvious domain bias to check
the improvement. RFW is a popular benchmark for racial
bias testing, which contains four subsets, Caucasian, Asian,
India and African. Moreover, we collect a new dataset
from CACD [2], called Age Face in-the-Wild (AFW). We
construct three testing subsets, Young (14-30 years old),
Middle-aged (31-60 years old) and Aged (60-90 years old).

Each subset contains 3,000 positive pairs and 3,000 nega-
tive pairs respectively. Besides, we further report the perfor-
mance on several widely used benchmarks including LFW
[13], CALFW [40], CPLFW [39] and AgeDB [21]. LFW
contains color face images from 5,749 different persons in
the web. We verify the performance on 6,000 image pairs
following the standard protocol of unrestricted with labeled
outside data. CALFW is collected with obvious age gap to
add aging process intra-variance on the Internet. Similarly,
CPLFW is collected in terms of pose difference. AgeDB
contains face images from 3 to 101 years old. We use the
most challenging subset AgeDB-30 in the following exper-
iments. We also extensively evaluate our proposed method
on large-scale face dataset, MegaFace [14]. MegaFace is
one of the most challenging benchmark for large scale face
identification and verification. The gallery set in MegaFace
includes 1M samples from 690K individuals and the probe
set contains more than 100K images of 530 different indi-
viduals from FaceScrub [22]. Table 1 shows the detailed
information of the involved datasets.

Table 1. Statistics of face datasets for training and testing. (P) and
(G) indicates the probe and gallery set respectively.

Dataset Identities Images

Training CASIA [36] 10K 0.5M
MS1MV2 [4] 85K 5.8M

Testing

LFW [13] 5749 13,233
CPLFW [39] 5,749 12,174
CALFW [40] 5,749 11,652
AgeDB [21] 568 16,488
RFW [33] 11,430 40,607
CACD [2] 2,000 160,000

MegaFace [14] 530 (P) 1M(G)

4.2. Experimental Settings

For data prepossessing, the face images are resized to
112× 112 by employing five facial points, and each pixel
in RGB images is normalized by subtracting 127.5 and di-
viding by 128. For all the training data, only horizontal
flipping is used for data augmentation. For the embedding
neural network, we employ the widely used CNNs archi-
tectures, ResNet18 and ResNet50 [11]. They both contain
four residual blocks and finally produce a 512-dimension
feature.

In all the experiments, the CNNs models are trained with
stochastic gradient descents (SGD). We set the weight de-
cay of 0.0005 and the momentum of 0.9. The initial learn-
ing rate starts from 0.1 and is divided by 10 at the 5, 8,
11 epochs. The training process is finished at 15-th epoch.
We set ε = 5.5 and λ = 0.01 in all the experiments. The
experiments are implemented by PyTorch [25] on NVIDIA



Table 2. Face verification results (%) with different strategies. (CASIA-Webface, ResNet18, sg refers to the soft gate)
Module LFW CALFW CPLFW AgeDB AverageRBM RBM(w/o sg) DBM

CASIA-Webface

98.8 91.0 85.4 90.2 91.35
X 99.2 92.0 87.3 91.9 92.6

X 99.1 91.0 87.1 91.3 92.12
X 98.7 90.6 85.4 90.3 91.25

X X 99.3 92.5 87.6 92.1 92.88

Figure 7. (a) The performance on four testing subsets, Caucasian,
Indian, Asian and African in RFW. (b) The performance on three
testing subsets, Young [0-30), Middle-aged [30-60) and Aged [60-
90) in AFW.

Tesla V100 (32G). We train the CNNs models from scratch
and set the mini-batch size to 256 and 800 for CASIA and
MS1MV2 respectively. During testing, we only keep the
feature embedding part without the final fully connected
layer (512-D).

We use cosine distance to calculate the similarity. For the
performance evaluation, we follow the standard protocol of
unrestricted with labeled outside data [13] to report the per-
formance on LFW, CALFW, CPLFW, AgeDB, RFW and
AFW. Considering the well solved on LFW, we further use
the more challenging LFW BLUFR protocol to evaluate the
proposed method. On MegaFace, there are two challenges.
We use large protocol in Challenge 1 to evaluate the perfor-
mance of our approach. For the fair comparison, we also
clean the noisy images in Face Scrub and MegaFace by the
noisy list [4].

To the compared approaches, we compare the proposed
method with the baseline Softmax loss and the recently pop-
ular state-of-the-arts, including SphereFace [18], CosFace
[32] and ArcFace [4].

4.3. Ablation Study

In this section, we investigate the effectiveness of each
balancing module in the proposed method.

Effectiveness of the RBM. Recall that the RBM mod-
ule consists of two main components: residual enhancement
and soft gate. The soft gate produces a harmonizing coeffi-
cient to automatically control the magnitude of the residual
attached to the top feature. When the soft gate is closed,

i.e, f (x) = 1 is constant for all samples, the RBM module
degenerates to a conventional residual that loses the ability
of distinguishing the head and tail domains. From Table 2,
we observe that the combination of the residual enhance-
ment and the soft gate brings large improvements on all
the datasets. The average performance of LFW, CALFW,
CPLFW, AgeDB has been improved from 91.35 to 92.12.
It is because RBM actually harmonizes the potential feature
bias among different domains.

Effectiveness of the Soft Gate. The soft gate pro-
duces the coefficient DFI to control the magnitude of resid-
ual added on the original feature. In this experiment we
analyze the effectiveness of the soft gate. As displayed in
Table 2, the performance drops significantly without the soft
gate. The average accuracy decreases 0.87%. These results
suggest that the improvement attained by the RBM block is
not mainly due to the additional parameters, but its internal
domain balancing mechanism.

Effectiveness of the DBM. We further validate the ef-
fectiveness of DBM that whether it can improve the poor
generalization caused by the long-tailed domain distribu-
tion. From the first row of each sub-boxes in Table 2, we can
find that DBM boosts the performance on all the datasets.
The average performance is stably improved compared to
the baselines, presenting its contribution to mitigate the po-
tential imbalance. Particularly, DBM achieves about 0.48%
average improvement over RBM, which indicates that bal-
ancing the contribution from different domains through loss
function can better address the problem.

4.4. Exploratory Experiments

We first investigate how our method improves the per-
formance on the different domains with different domain
frequency. We train Resnet50 on CASIA-Webface by Cos-
Face and our method. Figure 7 shows the performances on
different domains on two datasets. Firstly, for the Cosface,
the accuracy of Caucasian on RFW is significantly higher
than other races, and Asian gains the worse performance.
Besides, on AFW, the Young subset acquires the highest ac-
curacy while the performance on the aged persons degrades
heavily. The performance decay confirms our thought that
the popular methods is susceptible to the long-tailed domain
distribution. Secondly, our method consistently improves



the performance on almost all the domains. Particularly, the
accuracy increases more obviously on the tail domains, such
as the Asian on RFW and [60,90) aged persons on AFW,
which indicates that the proposed method can alleviate the
potential imbalance cross domains.

The nearest neighbor parameter K in Eq. 1 plays an im-
portant role in DFI. In this part we conduct an experiment
to analyze the effect of K. We use CASIA-WebFace and
ResNet18 to train the model with our method and evaluate
the performance on the LFW, CALFW and CPLFW as pre-
sented in Table 3. We can conclude that the model without
DFI suffers from the poor performances on all these three
benchmarks. The model attains the worst result on all the
datasets when K = 0, where the model degenerates into the
original form without balancing representation and margin
supplied by RBM and DBM. The model obtains the high-
est accuracy at K = 100. However, when K keeps increas-
ing, the performances decrease to some extent because a too
large K covers a too large region with sufficient samples and
weakens the difference between head and tail domain.

Table 3. Performance (%) vs. K on LFW, CALFW and CPLFW
datasets, where K is the number of nearest neighbor in Domain
Frequency Indicator (DFI).

K 0 100 1,000 3,000 6,000
LFW 98.8 99.3 99.1 99.2 99.2

CALFW 91.0 92.5 92.1 92.2 92.1
CPLFW 85.4 87.6 87.2 87.3 87.3

4.5. Evaluation Results

4.5.1 Results on LFW and LFW BLUFR

LFW is the most widely used benchmark for unconstrained
face recognition. We use the common larget dataset
MSIMV2 to train a ResNet50. Table 4 displays the the
comparsion of all the methods on LFW testset. The pro-
posed method improves the performance from 99.62% to
99.78%. Further, we evaluate our method on the more chal-
lenge LFW BLUFR protocol. The results are reported in
Table 5. Despite the limited improvement, our approach
still achieves the best results compared to the state-of-the-
arts.

4.5.2 Results on CALFW, CPLFW and AgeDB

Table 6 shows the performances on CALFW, CPLFW and
AgeDB, respectively. We also use MSIMV2 to train the
ResNet50. The results show the similar treads that emerged
on the previous test sets. Particularly, the margin-based
methods attain better results than the simple softmax loss
for face recognition. Our proposed method, containing ef-
ficient domain balancing mechanism, outperforms all the

Table 4. Face verification (%) on the LFW dataset. ”Training
Data” indicates the size of the training data involved. ”Models”
indicates the number of models used for evaluation.

Method Training Data Models LFW
Deep Face [30] 4M 3 97.35
FaceNet [26] 200M 1 99.63
DeepFR [24] 2.6M 1 98.95

DeepID2+ [29] 300K 25 99.47
Center Face [35] 0.7M 1 99.28

Baidu [17] 1.3M 1 99.13
Softmax 5M 1 99.43

SphereFace [18] 5M 1 99.57
CosFace [32] 5M 1 99.62
ArcFace [4] 5M 1 99.68

Ours 5M 1 99.78

Table 5. Face verification (%) on LFW BLUFR protocol.

Method
VR@FAR
=0.001%

VR@FAR
=0.01%

Softmax 87.53 93.03
SphereFace [18] 98.50 99.17

CosFace [32] 98.70 99.20
ArcFace [4] 98.77 99.23

Ours 98.91 99.53

other methods on these three datasets. Specifically, our
method achieves 95.54% average accuracy, about 0.4% av-
erage improvement over ArcFace.

Table 6. Face verification (%) on CALFW, CPLFW and AgeDB.

Method CALFW CPLFW AgeDB
Softmax 89.41 81.13 94.77

SphereFace [18] 90.30 81.40 97.30
CosFace [32] 93.28 92.06 97.70
ArcFace [4] 95.45 92.08 97.83

Ours 96.08 92.63 97.90

4.5.3 Results on MegaFace

We also evaluate our method on the large Megaface testset.
Table 7 displays the identification and verification perfor-
mances. In particular, the proposed method surpasses the
best approach ArcFace by an obvious margin (about 0.82%
at Rank-1 identification rate and 0.68% verification rate).
The reason behind may be that the proposed balancing strat-
egy can efficiently mitigate the potential impact of the long-
tailed domain distribution, which is ubiquitous in the real-
world application.



Table 7. Face identification and verification on MegaFace Chal-
lenge1. ”Rank 1” refers to the rank-1 face identification accuracy,
and ”Ver” refers to the face verification TAR at 10−6 FAR.

Method Rank1 (%) Ver (%)
DeepSense V2 81.29 95.99

YouTu Lab 83.29 91.34
Vocord-deepVo V3 91.76 94.96

SphereFace [18] 92.05 92.42
CosFace [32] 94.84 95.12
ArcFace [4] 95.53 95.88

Ours 96.35 96.56

5. Conclusion
In this paper, we investigate a new long-tailed domain

problem in the real-world face recognition, which refers to
few common domains and many more rare domains. A
novel Domain Balancing mechanism is proposed to deal
with this problem, which contains three main components,
Domain Frequency Indicator (DFI), Residual Balancing
Mapping (RBM) and Domain Balancing Margin (DBM).
Specifically, DFI is employed to judge the location of the
sample in the frequency distribution of the domain. RBM
introduces a light-weighted residual controlled by the soft
gate. DBM assigns an adaptive margin to balance the
contribution from different domains. Extensive analyses
and experiments on several face recognition benchmarks
demonstrate that the proposed method can effectively en-
hance the discrimination and achieve superior accuracy.
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